Building Electrification & Electric Vehicle Reach Codes
Community Charrette

March 20th, 2019
County of Santa Clara
1555 Berger Road | San Jose, CA 95112
Today’s Objectives

• To share information on the development of building electrification and electric vehicle reach codes
• To hear your voice
• To gather important feedback to frame reach code options for future adoption
Agenda

• Introductions & Opening Remarks
• What is a Reach Code?
• Statewide Cost-Effectiveness Study & What does it mean?
• Summary of Technologies
• Discussion: Understanding of Impacts
• Next Steps
Introductions and Opening Remarks

Blake Herrschaft
Senior Engineer
DNV GL

John Supp,
Account Services Manager, SVCE

Douglas Kot,
Head of Section
DNV GL

Avani Goyal,
Associate, TRC
Reach Code

Background
What is a Reach Code?

- California Title 24 Part 6 (the Energy Code)
 - Updated every 3 years
- California Title 24 Part 11 (CALGreen)
- Reach codes exceed Title 24, Part 6
 - Must be proven to be cost-effective
 - Can be prescriptive codes
 - Can be performance codes
What is a Reach Code?

• Local amendment to state code
• Developed through a stakeholder outreach process
 • Developers
 • Architects & Engineers
 • Environmental Organizations
 • Community Organizations
• Regulatory Entities
 • California Energy Commission – reviews and approves amendments to the energy code
 • Building Standards Commission – reviews and approves amendments to building code
How do Municipalities Adopt a Reach Code?

- Municipality internally explores Reach Codes
- Potential Reach Code options are defined
- Stakeholder and community outreach
- Refinement of Reach Code options
- Municipalities seeks community support for potential Reach Codes
- Municipalities completes the cost-effectiveness study (CEC Reviews)
- Municipalities approves through local Commissions and Councils
- Reach Code is approved!
Why Adopt a Reach Code?

- Construct more cost effective, safer, and healthier buildings
- To facilitate greater Electric Vehicle (EV) adoption rates
 - 2016 Code has an EV Charger density lower than current local uptake
- Prepare to meet future state code requirements, including 2019 Building Standards
- 2019 Energy Code addresses all-electric pathway
 - Solar Photovoltaic (PV) is required
 - Heat pump water heater pre-wiring is required
 - Residential all-electric compliance pathway established (not nonresidential)
- Reduce energy, cost and emissions
- Increase convenience, health and safety
Overview of Statewide Reach Code Cost Effectiveness Study
Overview of Statewide Reach Code Cost-Effectiveness Studies

• Analysis of options to exceed 2019 Energy Code (Title 24, Part 6)
• Cost-effectiveness measured by customer bill impacts as well as tests set by the California Energy Commission
 • Required for local ordinance application and approval
• Measures researched for residential and commercial new construction:
 • All-electric design
 • Energy efficiency (envelope, heating, cooling, lighting, hot water)
 • Solar photovoltaics and battery energy storage systems
• Demonstrates that it is possible to cost-effectively improve energy performance
Determining Cost Effectiveness

• Energy savings determined through building simulations
• Costs derived from local experts and online resources
• 30-year or 15-year net present value
Cost Effectiveness Considerations

• Findings presented hereafter are all cost effective
• All-electric compliance pathways are possible for new construction residential and some commercial buildings
• All-electric buildings reduce greenhouse gas emissions and are less-expensive to build
• Many all-electric packages have lower construction costs than mixed-fuel

<table>
<thead>
<tr>
<th></th>
<th>Mixed Fuel</th>
<th>All Electric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy</td>
<td>Energy</td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
<td>Efficiency</td>
</tr>
<tr>
<td></td>
<td>+ PV + Battery</td>
<td>+ PV + Battery</td>
</tr>
<tr>
<td>Single family</td>
<td>$1k</td>
<td>-$4k</td>
</tr>
<tr>
<td>Medium Office</td>
<td>$60k</td>
<td>-$50k</td>
</tr>
</tbody>
</table>
Interpreting the Residential Findings - EDR

- Energy Design Rating (EDR) is based on Home Energy Rating System (HERS)
 - 2006 IECC Standard = 100 EDR
 - Zero Net Energy = 0 EDR
 - 2019 Title 24 prescriptive home is ~40-50 EDR with efficiency only
 ~20 EDR with PV offsetting electricity use of a mixed-fuel home
- Currently a compliance output
- **EDR Reduction** -> going lower than 2019 Title 24 with cost-effective measures
Residential Findings for Santa Clara County (CZ4)

- Analyzed 2430 ft2 single family home and 6960 ft2 8-unit MF building
- Separate compliance pathways for mixed-fuel and all-electric homes
 - 2019 Energy Code (Title 24, Part 6) will require ~2.5 kW of PV/dwelling

These values are the maximum threshold for cost effectiveness using the required CEC Methods
Nonresidential Findings for Santa Clara County (CZ4)

These values are the maximum threshold for cost effectiveness using the required CEC Methods.
Key Takeaways for Community

• All-electric compliance pathways are possible for new construction residential and some commercial buildings

• All-electric buildings reduce greenhouse gas emissions and are less-expensive to build

• Your Cities and County are actively engaged in this process
Discussion Question:

What are your hopes and concerns for a Reach Code in your community?
All Electric Building Technologies & Policy Examples
Thermal Energy Use in California Buildings

Residential
- Water Heating: 49%
- Space Heating: 37%
- Cooking: 7%
- Pool Heating: 4%
- Clothes Drying: 3%

Non-Residential
- Water Heating: 32%
- Space Heating: 36%
- Cooking: 23%
- Misc: 9%
Efficiency of Thermal Technologies

- Natural Gas: 0.8
- Electric Resistance: 1
- Heat Pump: 3.5
All Electric Building Measures

- Space Heating
- Water Heating
- Cooking
- Clothes Drying
All Electric Building Measures

Space Heating Water Heating Cooking Clothes Drying
All Electric Building Measures

- Space Heating
- Water Heating
- Cooking
- Clothes Drying
All Electric Building Measures

- Space Heating
- Water Heating
- Cooking
- Clothes Drying
Many Homes are All-Electric Today

Percent of California Homes Electrified by End Use (RASS 2009)

- All-Electric Home: 5.7%
- Electric Dryer: 43.0%
- Electric Cooking: 33.6%
- Electric Water Heating: 7.6%
- Electric Heating: 5.7%
Electric Vehicle (EV) Technologies and Ordinance Examples
Electric Vehicle Definitions – Charger Types

<table>
<thead>
<tr>
<th>Level</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>15-20 Amp, 120v AC (standard household outlet)</td>
</tr>
<tr>
<td></td>
<td>Driving Distance: 3.3 miles/hour</td>
</tr>
<tr>
<td></td>
<td>Charging Time: 10-24 hours</td>
</tr>
<tr>
<td>Level 2</td>
<td>40+ Amp, 208/240v AC</td>
</tr>
<tr>
<td></td>
<td>Driving Distance: 25-30 miles/hour</td>
</tr>
<tr>
<td></td>
<td>Charging Time: 1-10 hours</td>
</tr>
<tr>
<td>DC Fast Charge</td>
<td>80-400 Amp, 200-600v DC</td>
</tr>
<tr>
<td></td>
<td>Driving Distance: 125-400 miles/hour</td>
</tr>
<tr>
<td></td>
<td>Charging Time: 10 min - 1 hour</td>
</tr>
</tbody>
</table>
Electric Vehicle Definitions – Space Types

EV Capable	Raceway (conduit), electrical capacity (breaker space)
EV Ready	Raceway (conduit), electrical service capacity, overcurrent protection devices, wire, and suitable termination points such as junction box (i.e. full circuit)
EVSE (electric vehicle supply equipment)	All the equipment needed to deliver electrical energy from an electricity source to a Plug-in Electric Vehicle (PEV’s) battery
Why Adopt EV Measures into Codes?

Including this into code now saves building owners significant costs later.

“Driving Plug-In Electric Vehicle Adoption with Green Building Codes” by Energy Solutions, PG&E
Discussion Question:

What all-electric technology is most important to you?

Can you see yourself living and driving all-electric?
Understanding Impacts
Building Ordinance Examples

<table>
<thead>
<tr>
<th>Ordinance Type</th>
<th>Example Reach Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Preferred</td>
<td>Marin County and Palo Alto: Mixed-fuel required to be 10-15% more efficient than state code, or All-electric</td>
</tr>
<tr>
<td>Carbon Neutral</td>
<td>Vancouver will require all new buildings to be carbon neutral by 2025</td>
</tr>
</tbody>
</table>
| Natural Gas Connections | Arcata and Berkeley have proposed ordinances banning natural gas piping
| | - No natural gas appliances installed
| | - Replace existing municipal natural gas equipment with electric
| | Amsterdam is weaning homes off natural gas by 2050, starting with public housing units “towards a city without natural gas.” |
Electric Vehicle Infrastructure Code Examples

<table>
<thead>
<tr>
<th>Building Sector</th>
<th>Baseline (2019 CALGreen Mandatory)</th>
<th>Bay Area Example Reach Codes</th>
</tr>
</thead>
</table>
| Single Family | EV Capable space | **Marin County, San Rafael:** EV Ready space
Palo Alto: at least EV Capable (increased amperage compared to CALGreen) |
| Multi Family | EV Capable for 10% of parking spaces | **Oakland and San Francisco:**
10% Level 2 EV Ready; remaining parking spaces EV Capable (including electrical capacity for an addition 50% of spaces with load sharing)
Palo Alto and Menlo Park:
One Level 2 EV Ready space per dwelling unit, and EVSE installation at some spaces |
| Non-Residential | EV Capable for 6% of parking spaces | **San Francisco:**
10% Level 2 EV Ready; remaining spaces EV Capable (including electrical capacity for an addition 50% of spaces with load sharing) |
Additional Examples

<table>
<thead>
<tr>
<th>Topic</th>
<th>Baseline (CALGreen Mandatory)</th>
<th>Example Reach Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renovations and Additions</td>
<td>Not included</td>
<td>Marin County — based on renovations to parking spaces and/or electrical room</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Francisco — based on overall building renovation</td>
</tr>
<tr>
<td>Harmonize with state accessibility codes</td>
<td>Not included*</td>
<td>Design EV parking spaces to comply with accessibility requirements (slope, barrier-free path of travel, etc.)</td>
</tr>
</tbody>
</table>

*In some cases, design of a single space may be required in multifamily housing.
Reach Code Examples

A) Performance
• Buildings using natural gas must exceed Energy Code (Title 24, part 6) by X%
• Buildings using electricity only must meet or exceed Title 24 by Y%
• Buildings over a certain size using…. must exceed Title 24 by Z%
• Buildings using XYZ equipment (e.g. packaged rooftop units)…. must exceed Title 24 by Z%

B) Prescriptive
• Buildings must include EV charging infrastructure or charger beyond CALGreen requirements
• Buildings must include pre-wiring for electric induction stoves
Discussion Questions on Impacts

Which reach codes would you support for your community?
Reach Code Development Timeline

- Outreach
- Research Existing State and Local Codes
- Development of Model Reach Codes
- Develop Customized EV Cost-Benefit Analysis
- Identify Tools and Processes for Adoption and...
- Provide Technical Assistance for Adoption
- Provide Technical Assistance for Implementation
Overview of Next Steps

Next Steps

• We are working with your City to provide adoption and implementation support

What you can do?

• Help get the word out about all-electric buildings and transportation
• Attend a citizen commission meeting and provide your opinion
• Look for (and attend) the follow-up meeting in late-April or early-May
Stay Connected

https://peninsulareachcodes.org

Contact Us

2019 Building Electrification & EV Infrastructure Reach Code Initiative

www.siliconvalleyreachcodes.org
Thank You!